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Planar Image Object Detection Spherical Image Object Detection

Determine the categories and locations 

of distorted spherical objects

Determine the categories and 

locations of planar objects
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Spherical Image Object Detection

Project to the spherical image The representation on the sphere
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Spherical Image Object Detection

Objects in spherical images cannot be bound tightly by planar rectangles or other biased representations.

Project to the spherical image The representation on the sphere
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IoU for Rectangles

• The IoU plays an important role in positive/negative samples selection, NMS operation in training 

stage and mAP calculation in evaluation, thus an unbiased IoU is essential to object detection task.

• Rectangles can tightly bound objects in planar images, and it is easy to compute its IoU.

• Spherical Rectangles can tightly bound objects in spherical images, but it is not easy to compute its 

IoU due to its complex boundaries and the intersection area.

IoU for Spherical Rectangles
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1. Existing Biased IoU Representation

Some existing evaluation criteria use biased bounding boxes to represent spherical rectangles in spherical images.

(a) Using axis-aligned rectangles to represent spherical objects in (Yang et al. 2018; Wang and Lai 2019).
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1. Existing Biased IoU Representation

Some existing evaluation criteria use biased bounding boxes to represent spherical rectangles in spherical images.

(a) Using axis-aligned rectangles to represent spherical objects in (Yang et al. 2018; Wang and Lai 2019).

(b) Using circles to represent spherical objects in (Lee et al. 2019).

Both of them compute the IoU between two rectangles or circles without considering the distortions 

of unrolled spherical images, thus they use biased representations and have large errors.
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2. Existing Biased IoU Calculation

Some existing evaluation criteria use biased bounding boxes to represent spherical rectangles in spherical images.

(c) Using axis-aligned rectangles on tangent planes (Su and Grauman 2017; Coors, Condurache, and Geiger 2018).
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2. Existing Biased IoU Calculation

Some existing evaluation criteria use biased bounding boxes to represent spherical rectangles in spherical images.

(c) Using axis-aligned rectangles on tangent planes (Su and Grauman 2017; Coors, Condurache, and Geiger 2018).

(d) Using sampled evenly spaced points on tangent planes and projecting them to spherical image, then 

computing IoUs based on polygons on spherical images (Coors, Condurache, and Geiger 2018).

Both of them make excessive approximations when computing the IoU, thus they give 

biased calculations and incorrect results.
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3. Existing Detectors for Spherical Image Object Detection Task

• Multi-kernel (Wang and Lai 2019): Using convolution 

kernels of different sizes and position information. It 

gives  poor ability to deal with distortion, which leads 

to poor detection performance.
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3. Existing Detectors for Spherical Image Object Detection Task

• Multi-kernel (Wang and Lai 2019): Using convolution 

kernels of different sizes and position information. It 

gives  poor ability to deal with distortion, which leads 

to poor detection performance.

• Reprojection R-CNN (Zhao et al. 2020): A two-stage 

detector, the anchor selection and sampling operation 

is complex. The network training is slow and does not 

support the end-to-end training mode.

The existing detection methods 

either gives poor performance 

or contains complex network 

structure and unsupported end-

to-end training mode.
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Our main contributions

• We propose an unbiased IoU as a novel evaluation criterion for spherical image object 

detection, which is based on the unbiased representations and utilize unbiased analytical 

method for IoU calculation.

• We also present Spherical CenterNet, an anchor free object detection algorithm for 

spherical images. The experiments show that the proposed Spherical CenterNet achieves 

better performance on one real-world and two synthetic spherical object detection datasets 

than existing methods.

• To the best of our knowledge, our work on proposed unbiased IoU is the first absolutely 

accurate spherical IoU both in the representation and in the calculation, which is applied 

to the training and evaluation for spherical image object detection task, and thus spherical 

image object detection algorithms can be correctly evaluated.
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Unbiased IoU Representation

• In planar case, the spatial location 

and extent of an object are defined 

using an axis-aligned rectangle:    

(x, y, w, h), where (x, y) is the 

center point and (w, h) is the width 

and height.

• In spherical case, the tightly 

bounded spherical rectangle can be 

defined as: (θ, φ, α, β), where θ is 

the azimuthal angle, φ is the polar 

angle, α and β is the horizontal and 

vertical field of view respectively.
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Unbiased IoU Calculation – Area of Spherical Rectangles

1. Construct the new coordinate system:
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Unbiased IoU Calculation – Area of Spherical Rectangles

1. Construct the new coordinate system: 2. Calculate the normal vector of each plane:

…
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Unbiased IoU Calculation – Area of Spherical Rectangles

3. Calculate the boundary angles on the sphere:

…
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Unbiased IoU Calculation – Area of Spherical Rectangles

3. Calculate the boundary angles on the sphere: 4. Compute the area of spherical rectangle:

…
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Unbiased IoU Calculation – Area of Spherical Rectangles

3. Calculate the boundary angles on the sphere: 4. Compute the area of spherical rectangle:

…
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Now we have derived the analytical solution of 

the area of spherical rectangle.
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Unbiased IoU Calculation – Intersection Area Computation Algorithm

Step 7 & 8: Compute the normal vectors as 

before, and then compute 8 vertices (4 vertices 

for each spherical rectangle) and other 32 

vertices (4 × 4 × 2) by cross product of the 

normal vectors of two intersecting planes.

Example: 

• Normal Vector p 

and q of plane 

OAD and OAB

• The vertex A can 

be computed by: 

p × q 
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Unbiased IoU Calculation – Intersection Area Computation Algorithm

Step 10: Remove points outside the intersection 

region by dot product.

Example: 

• The point M is an 

inner point because 

of cos(OM, nvi).all() 

≥ 0, where nvi is the 

normal vector of the 

i-th spherical 

rectangle boundary.
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Unbiased IoU Calculation – Intersection Area Computation Algorithm

Step 11: Remove duplicated points (more than 

two boundaries intersect at the duplicated points) 

via loop detection.

Example: 

• Z is the duplicated point (3 intersecting boundaries)

• After Step 10, there are five points left:

• By DFS algorithm, the only closed-loop                   

has remained and three intersection points are given.
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Unbiased IoU Calculation – Intersection Area Computation Algorithm

1 2 1
( ) ( 2)

n

ii
A b b n 

=
 = − −

Step 12-15: Compute the angles by cross 

product of the normal vectors of left points, and 

then the final intersection area can be computed 

via the following formula.
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An Anchor-free Spherical Detection Method: Spherical CenterNet
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An Anchor-free Spherical Detection Method – Loss Definition

• The classification loss (based on Focal Loss(Lin et al. 2017))

• The field of view regression loss (L1 Loss)

We introduce a weight wxy for each pixel at location (x, y). The pixels near the polar region, 

which are more distorted, have smaller weights than the pixels near the equatorial region.
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An Anchor-free Spherical Detection Method – Loss Definition

• The offset regression loss (Measure the angle between two 3D unit vectors)

:
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An Anchor-free Spherical Detection Method – Loss Definition

• The offset regression loss (Measure the angle between two 3D unit vectors)

:

• The overall training objective (The final loss)
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An Anchor-free Spherical Detection Method – Ground Truth Generation

• The generation of the ground truth offset

• The generation of the ground truth heatmap

We use gaussian kernel and assign nonzero values 

to negative locations within a radius of positive 

locations. The ground truth heatmaps is given by
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An Anchor-free Spherical Detection Method – Ground Truth Generation

Case (a):

• The generation of the ground truth offset

• The generation of the ground truth heatmap

We use gaussian kernel and assign nonzero values 

to negative locations within a radius of positive 

locations. The ground truth heatmaps is given by

The radius is determined by ensuring the IoU within 

a threshold with the ground truth. There are three 

cases, and the final radius is the minimum of them.

Case (a):
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An Anchor-free Spherical Detection Method – Ground Truth Generation

Case (a):

Case (b):

Case (c):

• The generation of the ground truth offset

• The generation of the ground truth heatmap

We use gaussian kernel and assign nonzero values 

to negative locations within a radius of positive 

locations. The ground truth heatmaps is given by

The radius is determined by ensuring the IoU within 

a threshold with the ground truth. There are three 

cases, and the final radius is the minimum of them.

Case (a):

Final Radius:
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Ground Truth Heatmaps & Spherical Convolution

• Ground Truth Heatmaps

• Spherical Convolutions

There are two ground truth heatmaps. 

The shape of the Gaussian kernels is 

consistent with the distortion of 

spherical objects. See the bed and the 

fan for example.

We use tangent images (Eder et al. 2020) to alleviate distortion problem, which facilitates

transferable and scalable 360° computer vision. We choose this type for two reasons: it keeps 

the parameter sharing property of convolution; it does not lead to performance degradation if 

more convolutional layers are added.
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Datasets

Real-world dataset:

• 3k images

• 37 categories

• Latitude distribution: 

Gaussian distribution

Synthetic VOC dataset1:

• 28k images

• 20 categories

• Latitude distribution: 

Gaussian distribution

Synthetic VOC dataset2:

• 28k images

• 20 categories

• Latitude distribution: 

Uniform distribution
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Experimental Results on different IoU computation methods

Table 1: The IoUs computed with different methods 

for three cases. Here spherical integral by numerical 

integration is taken as the reference method. The 

differences (△) are listed between each method and 

the reference method.

• The first three methods give incorrect result, as 

they do not compute the IoU on the sphere. 

• SphIoU (Zhao et al. 2020) also gives incorrect 

result, as it treats spherical rectangle as parts of 

spherical zones and has made too many 

approximations.
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Experimental Results on spherical integral and our unbiased IoU

Table 2: The IoUs computed 

with spherical integral and 

our method for three cases. 

The differences (△) are given 

between the two methods. 

The precision of spherical 

integral by numerical 

integration will be degraded if 

we use unrolled spherical 

images with lower resolution.

Note: With the decrease of the resolution, the accuracy of the spherical integral method would be degraded 

significantly. Furthermore, this spherical integral method is also time-consuming, which takes 37.5ms for 

IoU calculation, while our method is much faster and only needs 0.99ms at the same resolution (1024 × 512).
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Experimental Results on different spherical image object detection methods

Table 3: The performance of different methods on 360-Indoor, 

360-VOC-Uniform and 360-VOC-Gaussian datasets.

• In order to ensure the fairness, we conduct the experiments on different spherical image object detection 

methods in its original implementation, and evaluate the performance on our unbiased IoU (Those biased 

representations is converted to spherical rectangles for the IoU and the final mAP metric computation). 

• Our method can give the best performance on all three datasets compared with other methods.
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Ablation Study

Table 4: The performance of our 

network with different

backbones and different types of 

convolutions.
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Table 4: The performance of our 

network with different

backbones and different types of 

convolutions.

Ablation Study

Figure 1: Compared with planar 

convolution, spherical 

convolution can detect more 

seriously distorted objects.
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Visualization Results

Figure 2: Visual detection results of our method on 360-Indoor.
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Visualization Results

Figure 3: Visual detection 

results of our method on

360-VOC-Gaussian and 

360-VOC-Uniform datasets.
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• We propose the first unbiased IoU for spherical image object detection. We illustrate that 

spherical rectangles are natural representations for bounding boxes of spherical objects, 

and then give the unbiased IoU calculation method based on the new representation. 

• We present a new anchor-free object detection algorithm for spherical images, which 

directly output bounding boxes for objects. 

• Extensive experiments show that our unbiased IoU gives accurate results and the 

proposed Spherical CenterNet can get better results. 

• In the future, we would like to apply our unbiased IoU in other computer vision tasks, 

such as visual tracking.



Thank you!

1/26/2022 50


