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A ACCURACY AND MIOU COMPARISON
According to the general quality evaluation of the pseudo-labels,
we adopt two metrics to assess the performance of different frame-
works: the Accuracy and the mIoU. A comparison is made between
the baseline Unbiased Teacher and our CST as shown in Figure 1
(a)(b). From the figures we can observe that our CST can generate
more precise pseudo-labels compared to the baseline. Besides, the
gaps of the Accuracy and the mIoU between the baseline and our
CST are becoming larger during training, and the Accuracy and the
mIoU of Unbiased Teacher begin to drop after the early stage of
training, while those of our CST still keep increasing and tend to
be stable. Consequently, the coupling effect and the confirmation
biases are alleviated by the effective and robust CST model.
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Figure 1: (a) The Accuracy of pseudo-labels. (b) The mIoU
of pseudo-labels. "UB"means the baseline Unbiased Teacher.
"T1" ("T2") denotes the evaluation performed on the pseudo-
labels generated by the teacher T1 (T2).

B WEIGHTS COMPARISON BETWEEN TWO
TEACHERS

Our CST framework looses the coupling effect compared to the
traditional Teacher-Student framework. We have demonstrated the
fact by given the euclidean distance of weights between one student
model and another teacher model in the main paper. To further
verify that there are adequate differences between the knowledge
learned by the two teachers, we also give the weights distance
between the two teachers T1 and T2. The results are shown in
Figure 2. The euclidean distance of the weightsWT 1−T 2 between the
teacher T1 and the teacher T2 keeps far away as theweights distance
WT 1−S2 andWT 2−S1. This reveals that the two teachers have more
different meaningful knowledge, which confirms the effectiveness
in overcoming the coupling effect of our CST framework.
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Figure 2: The euclidean distance of weights. An additional
curve in yellow is added to represent the weight distance be-
tween the teachers T1 and T2.

C ANALYSIS ON THE RESULTS OF PASCAL
VOC DATASET

Our CST framework has achieved a comparable evaluation result
on PASCAL VOC [1] dataset referred in the Experiments section
in the main paper. Nevertheless, only one distinctive method Soft
Teacher [4] preforms better than our proposed CST on PASCAL
VOC because of less images and categories. Soft Teacher performs
better when there are rich labeled data or more simple instances
with less categories. Coincidentally, there are only 20 categories
and almost 5k images with 2.3 instances per image on average
in PASCAL VOC 2007 and PASCAL VOC 2012 dataset, while MS-
COCO [2] dataset has 80 categories in total with 7.7 instances per

1
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image on average. Hence it is easy to cause the over-fitting problem
in the training process of CST, which is also reflected in our practical
experiments. We give the AP50 evaluation metric on the PASCAL
VOC dataset as an example shown in Figure 3, it is obvious that the
performance achieves the best performance by our CST framework
in the early training stage after the Burn-In Stage, and then degrades
gracefully without gaining more benefits. Although we can decay
the learning rate to slow down and produce more gains during
training, a learning rate in Unbiased Teacher [3] is still adopted for
a fair and plausible comparison. With the same hyper-parameters,
the results on PASCAL VOC dataset solidly present the superiority
of the proposed CST compared to the baseline.
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Figure 3: TheAP50 evaluation result on PASCALVOC dataset
by our CST* framework.

D ADDITIONAL QUALITATIVE RESULTS
For lack of space, we give a few qualitative results of different
methods in the main paper to make a comparison. To show the
generality of our conclusions, more general qualitative results are
visualized as shown in Figure 4. These additional qualitative results
further emphasize the superior detection performance of our CST
and CST* framework, including the larger percentage of the correct
classification and the precise localization with more detected ob-
jects, compared to the prior supervised and the Unbiased Teacher
methods.
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Figure 4: Additional qualitative results of different methods. (a) Supervised. (b) Unbiased Teacher. (c) Our CST. (d) Our CST*.
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